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Objectives

What are the perfect discretizations?

“ they preserve and mimic mathematical properties of physical systems;

® they are accurate on adaptive smooth and non-smooth grids;
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Objectives

What are the perfect discretizations?
“ they preserve and mimic mathematical properties of physical systems;
® they are accurate on adaptive smooth and non-smooth grids;

™ they can be used for a wide family of grids and operators.
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Model diffusion problem

We consider the elliptic equation
—div(K Vp) = b in Q
subject to the homogeneous Dirichlet b.c.

p=0 on 0f.

The problem can be reformulated as a system of first order equations:

divf = b,
f = —KVp.

For simplicity we assume that K = I.
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Consider the mathematical 1dentity:

/gradpfdx:—/divfpdx Vf € Hyir (), p € HF ().
Q Q

Support-operators (SO) methodology (for div & grad):
1. define degrees of freedom for variables p and f;

2. equip the discrete spaces for p and f with scalar products |-, -|g and
-, -] x, respectively;

3. choose a discrete approximation to the divergence operator, the prime
operator DIV : Xy — Q4;

4. derive the discrete approximation of the gradient operator, the derived
operator GRAD: Q4 — Xy, from the discrete Green formula:

/%, GRAD p%x = —[DIV f%, p%o  Vp* € Qq4, f* € X4.
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Support operator method (1/2)

Consider the mathematical 1dentity:
/gradpfda::—/divfpdx Vf € Hyir (), p € HF ().
Q Q

Support-operators (SO) methodology (for div & grad):
1. define degrees of freedom for variables p and f;

2. equip the discrete spaces for p and f with scalar products |-, -|g and

-, ] x, respectively;

3. choose a discrete approximation to the divergence operator, the prime
operator DIV : Xyg — Q4;

4. derive the discrete approximation of the gradient operator, the derived
operator GRAD: Q4 — Xy, from the discrete Green formula:

/%, GRAD p%x = —[DIV f%, p%o  Vp* € Qq4, f* € X4.

» Los Alamos

NATIONAL LABORATORY -




Support operator method (2/2)

Applications of the SO methodology include:

W Electromagnetics: discrete operators DIV, GRAD, CURL and CURL
mimic;:

div curl = 0, curl grad =0

/CurlE-de:/cuﬂH-de—k% (Ex H) -nds
Q Q 1Y)

W CFD: discrete operators DIV and GRAD mimic:

/gradu:Tda::—/divT-udx-l—]{ u- (T -n)ds
Q Q o9

@ Gas dynamics, poroelasticity, magnetic diffusion, radiation diffusion, etc...

http://www.sci.sdsu.edu/compscims/MIMETIC/index.htm

» Los Alamos

NATIONAL LABORATORY -




Mimetic discretizations (1/10)

Step 1 (degrees of freedom for p and f).

d

£y

W p¢ is defined at a center of cell ¢;.

m fd. ..., f& are defined at mid-points of cell edges. They approximate the
normal components of f, e.g.

z'dl %.fnzl
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Mimetic discretizations (2/10)

Step 2 (scalar products for p¢ and f9).

W Let Q4 be a vector space of discrete intencities with the scalar product

b, g Q—meqz /<>q<x>dx.

Q

1 Let X d be a vector space of discrete fluxes with a scalar product

~ Jo £ z)dz.

The vectors can be recovered uniquely at
four vertices of quadrilateral e;. Let

4
1 d
1, 9ilx., = 5 > Tyl £ - g,
j=1

Mz

Then d
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Mimetic discretizations (2/10)

Step 2 (scalar products for p¢ and f9).

W Let Q4 be a vector space of discrete intencities with the scalar product

b, g Q—Z|ez|pzqz /<>q<x>dx.

Q

1 Let X d be a vector space of discrete fluxes with a scalar product

~ Jo £ z)dz.

The vectors can be recovered uniquely at

- four vertices of quadrilateral e;. Let
d

f

1l 4
1 d
\ [fzda gfi]Xei ) E :|Tz'j| fij -gfj
=1

Mz

Then d
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Mimetic discretizations (2/10)

Step 2 (scalar products for p¢ and f9).

W Let Q4 be a vector space of discrete intencities with the scalar product

b, g Q—Z|ez|pzqz /<>q<x>dx.

Q

1 Let X d be a vector space of discrete fluxes with a scalar product

~ Jo £ z)dz.

The vectors can be recovered uniquely at
four vertices of quadrilateral e;. Let

4
1 d
1, 9ilx., = 5 > Tyl £ - g,
j=1

Mz

Then d
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Mimetic discretizations (2/10)

Step 2 (scalar products for p¢ and f9).

W Let Q4 be a vector space of discrete intencities with the scalar product

b, g Q—meqz /<>q<x>dx.

Q

1 Let X d be a vector space of discrete fluxes with a scalar product

~ Jo f z)dz.
fi;l The vectors can be recovered uniquely at
/ four vertices of quadrilateral e;. Let
1A
111, gi1x., = 5 Z T35 F5 - g2
j=1
N
Then d Z 4 g
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Mimetic discretizations (3/10)

Steps 3 & 4 (prime and derived operators).

The prime operator DIV follows from the Gauss the-

orem.

1
divf = lim — f-ndl.

le]—0 |e| Jae

Center-point quadrature gives

(DIVfd)z: ( zdl |ll‘+ zd2 |l2|+ z(é|l3|+ chl‘l4|)

1
€|
The derived operator GRAD is implicitly given by

[f¢, GRADp?|x = —[DIV f¢, pYlo  V¥p? € Qq, f* € Xu.
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Mimetic discretizations (4/10)

Short summary.

The stationary diffusion problem

—divKVp = b in
p = 0 on 01

1s rewritten as the 1st order system
f=—-KVp, divf =0
and discretized as follows:

f¢ = —GRAD p*, DIV f% = .
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Mimetic discretizations (5/10)

By the definition,
[f¢, GRAD p?|x = —[DIV f4, p?]g.
Let < -, - > be the usual vector dot product. Then
P ¢"lo =<Dp" ¢" >, [ ¢'lx =< Mf% g7 >.
Combining the last two formulas, we get

[f¢, GRADpdlx = < M f¢ GRADp? >
= —[DIVf pg=— < f¢ DIVIDp? > .

Therefore,
GRAD = — M~ 1 DIV D.

/3s the non-local operator.
> Los Alamos
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Mimetic discretizations (6/10)

A local SO method mimics the mathematical identity

/f-gradpd:c—l—/divfpdx:/pf-ndl.

€ Oe

p®:  atcell centers and edge centers
Step 1 (degrees of freedom):

f4:  normal components at edge centers

pd, fo

o %, &
pL) fL

d d
pBa.fB
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Mimetic discretizations (7/10)

Steps 2 & 3 (discrete identity and prime operator).

The prime operator DIV is derived from the Gauss theorem:

1

DIV f4 = B (fRllr| + fElr| + fEIIL] + f3lls])

Derivation of the discrete identity:

. / f - gradpdz =~ [f¢, GRAD p%]x,

o /divfpdx%(DIVfd)Pgl|e|

e

- /pf-ndzzp%f%umpf}f%w+p%fz|lL|+p%f§|lB|
Oe
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Mimetic discretizations (8/10)

Step 4 (derived operator).

Replacing integrals in the Green formula by their approximations, we get

( IR (de—Pg)\
[ d .d
GRAD p¢ = M T(p(f p;)
lL (pL_pc)

where
<M f% g% >=[f% g%x

and f4 = (f&, £, 4, f2)t. The local discretization reads

e

DIV f¢ = b9,

d fd = —GRAD pd.
s Los Alamos
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Mimetic discretizations (9/10)

Short summary.

W matrix M1 € R4*4;

W discrete divergence and gradient operators mimic essential properties of the
continuous operators (local mass conservation, Green formula);

W discretization and continuity conditions are separated;

@ we do not assume anything about a grid structure.
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Mimetic discretizations (10/10)

/pf ndl ~ g f ]+ A+ FL) + p 2],
Oe

The global discretization 1s achieved by imposing the continuity of fluxes

d _  ¢d
iR — jL
and interface intensities
d _ d
Pir = P,L-
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Locally refined meshes (1/6)

The global discretization 1s achieved by imposing the continuity of fluxes

d
iR — ]L — —ka

and interface intensities

lir| pir = |le|P?L + ez | Pl
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Locally refined meshes (2/6)

Stencils of a stiffness matrix for interface intencities.

® ® ®
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Locally refined meshes (3/6)

The derived mimetic discretizations are exact for linear solutions.

1

09

0.8

0.7F

0.6

0.5

0.4 AN

03

0.2

0.1

» Los Alamos

NATIONAL LABORATORY



o

P

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

m

1

0.4

0.6

0.8

o
i

0.9H

=~
i
e

0.8H

=i T
HH

Y
07 i
1)

s

0.6 HAHHH

0.5 B \1_3‘_ j

0.4 \‘)I' R

WA 1
0.3 FEEtR R EnH
- Tt

0.2: HHH

EEN
Y -
= EwEA

asnmAvEia)
H H

i

E e H ANV
0.1 [FrErHE

0

Los Alamos

NATIONAL LABORATORY

0 0.2

o 3—431 H

[ N Ep i #ir CPU,s
AMR grids
0 256 7.00e-2  8.18e-2 | 12 0.05
1 556  1.64e-2 3422 | 15 0.14
2 988  3.74e-3  1.74e-2 | 16 0.28
3 3952 9.96e-4  7.57e-3 16 1.33
4 | 15808  2.40e-4  3.79e-3 17 6.21
Uniform grids
0 256 7.00e-2  8.18e-2 | 12 0.05
1 1024 1.79e-2  3.40e-2 | 13 0.27
2 4096 391e-3 1.62e-2 | 14 1.25
3 | 16384 9.44e-4  7.30e-3 15 5.58
4 | 65536 2.32e-4  3.76e-3 17 25.3

p(z, y) =1 —tanh (

(x — 0.5)2 + (y — 0.5)?

0.01

).




Locally refined meshes (5/6)
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Let us consider the diffusion problem with strong material discontinuity

[K] =100 at +/(z—0.5)2+ (y—0.5)2 = 0.25.
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SO and mixed FE methods (1/3)

The system of mimetic finite difference equations
f¢ = —GRAD p*, DIV f% = p?
can be rewritten as

[f%, ¢%lx + [GRADp?, ¢%]x =0,
DIV 4, ¢%g = [v%, ¢Y]q.
Recall that by the definition,

/%, GRAD p?|x = —[DIV f¢, p%o.
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SO and mixed FE methods (2/3)

Thus, the mimetic discretizations are equivalent to
[/, ¢%]x —[DIV f4, p%lq = 0,
_[DIV fd7 qd]Q — _[bda qd]Qa vpd S Qda gd S Xd-

On the other hand, the MFE method with the Raviart-Thomas elements gives

—(div f*, ¢") =-(b,¢") V4" €Qn, g" € Xp.
p%:  atcell centers one per cell

Degrees of freedom:  fd.  pormal components normal components,

at edge centers one per edge
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SO and mixed FE methods (3/3)
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h—1 modified RT FE SO FD

Ep Ef Ep Ef
16 || 1.58e-3 | 2.34e-2 || 1.61le-3 | 2.35e-2
32 || 7.95e-4 | 1.22e-2 || 7.99e-4 | 1.22e-2
64 || 3.98e-4 | 6.29¢-3 || 3.99e-4 | 6.29¢-3
128 || 1.99e-4 | 3.22e-3 || 1.99e-4 | 3.22e-3
256 || 9.97e-5 | 1.64e-3 || 9.97e-5 | 1.64e-3
512 || 4.98e-5 | 8.32e-4 || 4.98¢e-5 | 8.32e-4

Ep Ef Ep Ef
16 || 1.42e-3 | 2.24e-2 || 1.43e-3 | 2.25¢-2
32 || 7.15e-4 | 1.17e-2 || 7.18e-4 | 1.17e-2
64 || 3.59e-4 | 5.96e-3 || 3.59e-4 | 5.98e-3
128 || 1.80e-4 | 3.06e-3 || 1.80e-4 | 3.07e-3
256 || 9.00e-5 | 1.56e-3 || 9.00e-5 | 1.56e-3
512 || 4.50e-5 | 7.93e-4 || 4.50e-5 | 7.93e-4




SO and FD methods (1/1)

In collaboration with M.Pernice (CCS-3), the SO method was compared with the
FD method by R.Ewing, R.Lazarov, and P.Vassilevki (1991):

@ the FD method works on rectangular locally refined grids;

™ 1in the case of smooth solutions, the FD method results in larger error (left

picture) on irregular grid interfaces:
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SO and CV methods (1/1)

The control-volume mixed FE method by T.Russell (2001):
“ the method does not preserve the uniform flow on irregular grids;

@ the principle difficulty is the scalar product in a space of fluxes.

The control-volume method on general polygonal meshes by T.Palmer (2001):
™ the method is exact for linear solutions;

“ the method results in non-symmetric matrices.

The SO method on general polygonal meshes (2003):
™ the method is exact for linear solutions;

“ the method results in symmetric positive definite matrices.
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Recent developments (1/3)

Exact solution is p(z, y) = = + y. A new scalar product in the space of fluxes
results in mimetic discretizations which are exact for linear solutions.
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Convergence test for exact solution p(z, y) = sin(27x) sin(27y).

m || New scalar product OId scalar product
€p Ef Ep £f
166 1.07e-1 | 3.68e-1 1.81e-1 | 4.57e-1
598 || 2.60e-2 | 1.64e-1 3.39e-2 | 2.52e-1
2230 || 5.11e-3 | 8.28e-2 6.64e-3 | 1.72e-1
8566 1.05e-3 | 4.29e-2 1.51e-3 | 1.20e-1
1 1
0.9 0.9 %/
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Recent developments (3/3)

Examples of bad-shaped elements which are common for locally refined and

AN

We believe that the new methodology can be extended to all the above elements.

non-matching meshes:
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the convergence of mimetic discretizations for the linear diffusion equation
1s optimal on locally refined meshes in both Cartesian and r — 2z gemetries
(2nd order on smooth meshes but only 1st order for fluxes on random grids);

the mimetic discretizations are comparable with mixed FE discretizations

but more preferable than the discretizations based on CV or FD methods;

a reduced system for interface intencities has SPD coefficient matrix and
can be efficiently solved with a PCG method;

the preliminary numerical experiments on general polygonal meshes show
the optimal convergence rate for mimetic discretizations (2nd order for
intencities and 1st order for fluxes).
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